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ABSTRACT
Combinatorial auctions (CAs) have been studied by the multi-
agent systems community for some time, since these auc-
tions are an effective mechanism for resource allocation when
agents are self-interested. One challenge, however, is that
the winner-determination problem (WDP) for combinatorial
auctions is NP-hard in the general case. However, there are
ways to leverage meaningful structure in the auction so as to
achieve a polynomial-time algorithm for the WDP. In this
paper, using the formal scope of parameterized complexity
theory, we systematically investigate alternative parameter-
izations of the bids made by the agents (i.e. the input to
the WDP for combinatorial auctions) and are able to de-
termine when a parameterization reduces the complexity of
the WDP (fixed-parameter tractable), and when a particular
parameterization results in the WDP remaining hard (fixed-
parameter intractable). Our results are relevant to auction
designers since they provide information as to what types of
bidding-restrictions are effective for simplifying the winner
determination problem, and which would simply limit the
expressiveness of the agents while not providing any addi-
tional computational gains.
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1. PRELIMINARIES
Combinatorial Auctions
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A combinatorial auction consists of a set of n agents, and
m items to be auctioned. The set of agents will be denoted
by N = {1, 2, . . . , n} and the set of items by M . For any
subset S ⊆ M , any agent i can place a bid bi(S) ∈ Z on
S. We assume that bi(S) ≥ 0 for all S ⊆ M and that the
agents are self-interested.

An atomic bid, denoted (S, p), includes a set of items
S ⊆ M and its bid value, p ≥ 0. We assume that for
each agent i, bids are submitted as a set of atomic bids,
{(Si1, pi1), . . . , (Siri

, piri)}.
The winner determination problem, which calculates the

allocation of goods to agents can be done by solving an in-
teger program, which is NP-hard. We refer the reader to
[4] and [1] for a more thorough introduction to CAs and the
WDP.

Bid Graphs

Each vertex in a bid graph is a bid, and an edge exists
between two vertices if the two bids they represent share an
item. We denote the bid for agent i as Vi, which consists
of atomic bids (Si1, pi1), . . . (Siri

, piri) where Sij ⊆ M and
pij > 0. For each agent i, we define ri to be the number of
atomic bids in Vi and let Mi represent the total number of
items used over all atomic bids, counting each item exactly
once. We let R represent the number of distinct subsets of
items S ⊆ M that have at least one atomic bid placed by
an agent.

By definition, a bid graph is the intersection graph of the
distinct atomic bids. The WDP is equivalent to finding
a maximum weighted independent set on the constructed
graph [4].

Parameterized Complexity

The WDP for the general CA is NP-complete [3]. Even
though it is NP-complete, we must research its potential so-
lutions because in practice, some solution is required. There
are a number of different approaches to analyzing NP-hard
problems, one of which is parameterized complexity theory.

Parameterized complexity theory and the notion of fixed-
parameter tractability were developed by Downey and Fel-
lows to further classify intractable problems [2]. By relaxing
the requirement that an algorithm runs in polynomial time,
the theory allows the running time to be large in terms of
one or more parameters, provided that it is polynomial with
respect to the input size. The goal is to design algorithms
that run efficiently if the parameters are sufficiently small,
regardless of the size of the input. If such an algorithm ex-
ists, the problem it solves is called fixed-parameter tractable
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(FPT). If not, we say the parameterization is W [1]-hard.
The notions of FPT and W [1] are similar to that of P

and NP , and for the purposes of this paper we will not
delve further into the many other parameterized complexity
classes, but instead refer the reader to Downey and Fellows
for a complete description [2].

For further details about the hierarchy and its definition,
see Downey and Fellows [2].

2. PARAMETERIZATION
In a CA, we view the numbers of agents, items, and the

sizes of the bids as parameters; hence, placing a bound on
some or all of these parameters may help restrict the problem
space and allow us to derive more efficient solutions. Alter-
natively, some parameterizations may not reduce the com-
plexity from the NP-hard general problem. Such a parame-
terization is said to be fixed-parameter intractable. Negative
results such as this can be very important in helping us un-
derstand what makes the problem difficult to solve. Further,
by showing certain parameterizations to be hard, we provide
cases to the research community where we know efficient al-
gorithms cannot be found. This allows others to focus on
other parameterizations that may yield positive results.

We begin with a simple parameterization of the WDP,
which is W [1]-complete.
k-WINNER DETERMINATION (k-WD)

Input: A set of agents N , items M , and bids V =
V1, V2, . . . Vn.

Parameter: Positive integer k.
Question: Does there exist a set of mutually disjoint

atomic bids {(S1, p1), (S2, p2), . . . , (S�, p�)}

such that
∑

�

j=1(pj) ≥ k?

Restricting the Graph Class

We consider what happens if we restrict agents to certain
types of bids. That is, we restrict each agent to bidding such
that the bid graph of the agent’s bids maintains a desired
structure. The question we then ask is how this structure
affects the hardness of the overall combinatorial auction; is
the WDP for the auction fixed-parameter tractable, or does
it remain W [1]-hard?

First we present a general problem definition, in which we
restrict our problem using β and parameterize by k, where
β is some desired graph class. We require that the graph
class of each agent i’s bid graph be a graph from class β.
β, k-WINNER DETERMINATION (β, k-WD)

Input: A set of agents N , items M , and bids
V = V1, V2, . . . Vn, where the bid graph
generated by Vi belongs to graph class β.

Graph Class: β.
Parameter: Positive integer k.
Question: Does there exist a set of mu-

tually disjoint atomic bids
{(Si1 , pi1), (Si2 , pi2), . . . , (Si�

, pi�)} such

that
∑

�

j=1(pij ) ≥ k?
Using different language, Rothkopf et al. showed that

if β is the class of interval graphs, then β, k-WD is fixed-
parameter tractable [3].

Proposition 2.0.1. If β is the class of chordal graphs,
the β, k-WD problem is W [1]-hard.

Given that we cannot restrict β as the class of chordal

graphs, a natural question to ask is for which graph classes
the β, k-WD problem remains W [1]-hard.

A minimal β graph is a graph from graph class β whose
size is minimal. It is possible for a minimal β graph to have
infinite size, and so our first restriction is that β have a min-
imal β graph of finite, constant size. We use this restriction
in Theorem 2.0.2. The idea is that the minimal β graph
has finite, constant size, and thus has a maximum weighted
independent set that can be determined in constant time.

Theorem 2.0.2. If β has a minimal β graph of finite,
constant size and β imposes no restriction on the interaction
between the atomic bids of different agents, then the resulting
β, k-WD problem is W [1]-hard.

3. CONCLUSIONS
For our main result, we restricted graph class β such that

the resulting β, k-WD problem remained W [1]-hard. This
restriction of β is lax enough to allow many different graph
classes. It is useful because in the investigation of CAs as
they apply to specific economic areas, one may find structure
in the bid graphs of individual agents. We show a number
of these structures that do not reduce the complexity of the
WDP. Knowing which structures are not helpful is often just
as important as finding ones that lead to fixed-parameter
tractability.

Parameterizations are of particular relevance to auction
designers since they provide information as to what types
of bid-restrictions are effective for simplifying the winner
determination problem, and which would simply limit the
expressiveness of the agents while not providing any addi-
tional computational gains. With each negative result, we
find ourselves closer to a more complete characterization of
the WDP for CAs and have a deeper understanding of what
makes the problem difficult.

The main contribution of this paper is its demonstration
of the use of parameterized complexity in the investigation
of the WDP for CAs. With parameterized complexity the-
ory, it is possible to parameterize the WDP and discover
new, more efficient algorithms, and prove when parameter-
izations are as hard as any solution for the general WDP.
Parameterized complexity could be used to classify many
different parameterizations of WDP for CAs to the point
where in many “real-world” scenarios where we find a re-
strictive structure, one could simply look up in a chart to
see if such a parameterized version of the CA existed.
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